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Abstract

In this paper, the meshless local Petrov–Galerkin (MLPG) method is extended to dealing with nonlinear water wave

problems. The formulation is based on general fluid governing equations and a time marching procedure. At each time

step, the boundary value problem for the pressure is solved using the MLPG method; and the velocity and position of

nodes are updated by numerical integration. The newly-extended method is applied to simulating water waves gener-

ated by a wave maker and good agreement with analytical solutions and finite element results is presented.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Simulation of non-linear water waves has received numerous studies, for which mesh-based methods,

such as finite element, finite volume and finite difference methods, are widely used. These methods have pro-

vided many useful and satisfactory results. However, their successes largely rely on good quality meshes.

The construction of those meshes is usually a difficult and time-consuming task because it must be ensured

that the aspect ratios of all elements are not very large and not very small and the connectivity between

nodes and elements must be carefully and accurately found and recorded. In addition, elements can fre-
quently become over-distorted during the simulation of water wave evolutions. The over-distorted elements

may be amended by remeshing. However, remeshing can be as expensive as the generation of original

meshes and may take a major proportion of computational costs considering that this has to be done
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frequently or even every time step. Although the over-distortion problems may not arise if using fixed

meshes, numerical diffusions due to advection terms may become severe and the motion of a floating body

is not easy to cope with in such cases.

A new class of methods has recently been developed, which can overcome the problems associated with

mesh-based methods. These methods do not need the use of any mesh to discretise computational domains
and to construct approximate solutions. Alternatively, they are only based on randomly-ordered and -dis-

tributed nodes, implying that the problems associated with the shape and connectivity of elements in mesh-

based methods vanish automatically in these meshless (or particle) methods. Many meshless (or particle)

methods have been reported in the literature, such as element free Galerkin method [1], diffusion element

method [2], reproducing kernel particle method [3], smooth particle hydrodynamics method [4], particle fi-

nite element method [5] and so on. Among them, the smoothed particle hydrodynamics (SPH) method has

been most widely used to simulate water wave problems (see, e.g. [4,6,7]).

More recently, another meshless method, called meshless local Petrove–Galerkin (MLPG) method, has
been developed in [8,9]. This method is based on a local weak form over local sub-domains (circles for two

dimensional problems and spheres for three dimensional ones). It offers great flexibility. Many other mesh-

less methods can be considered to be special cases of the MLPG method. The success of the MLPG method

has been reported in solving fracture mechanics problems [10], beam and plate bending problems [11], three

dimensional elasto-static and -dynamic problems [12,13] and some fluid dynamic problems such as steady

flow around a cylinder [8], steady convection and diffusion flow [14] in one and two dimensions and lid-

driven cavity flow in a two dimensional box [15]. Nevertheless, publications have not been found so far

to use this method for solving flow problems with a free surface.
In this paper, the MLPG method will be extended to simulating nonlinear water waves. These problems

are of great importance to offshore engineering but are difficult to deal with. They do not only have the

features of general fluid dynamic problems but also have an unknown moving free surface. Any new numer-

ical method, even successfully applied to other fluid problems, is usually required to be carefully refined

when it is applied to water waves. It is the purpose of this paper to explore the potential of the new devel-

oped MLPG method in modelling the propagation of nonlinear water waves.
2. Governing equation and numerical procedure

The flow of incompressible and non-viscous fluids is considered, which is governed by the following

equations and conditions:
r �~u ¼ 0; ð1aÞ

D~u
Dt

¼ � 1

q
rp þ~g; ð1bÞ

D~x
Dt

¼~u and p ¼ patm on the free surface; ð2aÞ

~u:~n ¼ ~U :~n and ~n:rp ¼ q ~n �~g �~n � _~U
� �

on solid boundaries; ð2bÞ
where q is the density of fluids,~u the velocity of fluids, ~U the velocity of solid boundaries,~g the gravitational

acceleration, p the pressure and patm the atmospheric pressure.

It is well known that the non-viscous flow can be formulated by a velocity potential. However, because

our research efforts will not be restricted to non-viscous flow in future, the potential formulation is not
adopted here.
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The above equations will be solved using a time-step marching procedure. This starts from a particular

instant when the velocity and the geometry of fluid flow are known and then evolves to next time step, at

which all physical quantities are updated by solving the governing equations. During each time step, the

problem is formulated using a well known time-split procedure. This formulation contains three sub-

steps:

(1) Evaluating intermediate velocities and positions

At the start of a new time step, the intermediate velocities and positions are first evaluated by
~uð�Þ ¼~uðnÞ þ~gDt; ð3Þ

~rð�Þ ¼~rðnÞ þ~uð�ÞDt; ð4Þ

where~r is the position vector of a point; Dt is the time step; and the superscripts (n) represent the quantities

at time t = tn. On this basis, the velocities at time t = tn + 1 = tn + Dt can be expressed by
~uðnþ1Þ ¼~uð�Þ þ~uð��Þ: ð5Þ

(2) Estimating the pressure

Integrating Eq. (1b) over the time interval (tn,tn + 1) results in
~uðnþ1Þ ¼~uðnÞ þ~gDt �
Z tnþ1

tn

1

q
rp

� �
dt:
The integration with respect to time can be approximated by well-known methods, such as explicit,

implicit or semi-implicit methods. The implicit method is used in this work, which gives
~uðnþ1Þ ¼~uðnÞ þ~gDt � Dt
q
rpðnþ1Þ
and so
~uð��Þ ¼ �Dt
q
rpðnþ1Þ: ð6Þ
The velocity in Eq. (5) must also satisfy the continuity Eq. (1a), leading to
r2pðnþ1Þ ¼ q
Dt

r �~uð�Þ: ð7Þ
This is the equation governing the pressure at the new time level.

(3) Computing the velocity and the position at time t = tn + 1

After the solution for p(n + 1) is found, the velocities can be estimated using Eq. (5) and the positions of

fluids can be updated by numerically integrating the velocities.

The time split procedure was initially introduced by Chorin [16] for incompressible flow in 1968. It has
been extended to deal with various problems using a finite element method as described in the book of Zie-

nkiewicz and Taylor [17]. The procedure has also been employed by a number of authors who use other

meshless or particle methods, e.g. [7,18,19].

Although the above formulation is employed for the non-viscous flow it may be extended to viscous flow

by adding viscous stress terms to Eq. (3). In that case, however, iterations may be necessary since the vis-

cous stresses are estimated using the velocities at previous steps, which would require to be improved for

coping with complicated phenomena in viscous flows. In addition, this formulation can be directly applied

to three dimensional problems, though only two dimensional ones are dealt with in this paper.



rJ

J
I

Integration domain 

at node I

Support domain 

at node J

Fig. 1. Illustration of nodes, integration domain and support domain.

614 Q.W. Ma / Journal of Computational Physics 205 (2005) 611–625
3. MLPG formulations

The key task in the above formulation is to find the solution for the pressure by solving Eq. (7).

Various methods, such as finite element and finite different methods may be used but in this paper

the MLPG method will be employed. This method is based on a set of nodes, as illustrated in Fig.

1, which discretise the fluid domain. Some of these nodes are located on boundaries and others lie

inside the fluid domain. Formulation around inner nodes is first discussed and formulation around

boundary nodes is described in Section 5. At each of the inner nodes, a circular sub-domain is speci-

fied. Eq. (7), after multiplying by an arbitrary test function u, is integrated over the sub-domain,

leading to
Z
XI

r2p � q
Dt

r �~uð�Þ
h i

udX ¼ 0; ð8Þ
where XI is the area of the sub-domain centred at node I. There are many options for the test function [9].

One of these is based on the Heaviside step function given by
u ¼
1 in XI ;

0 otherwise:

�

Using the Heaviside step function as the test function and applying the Gauss�s theorem to Eq. (8) yield
Z
oXI

~n � rpdS ¼ q
Dt

Z
oXI

~n �~u� dS; ð9Þ
where oXI is the boundary of XI and ~n is the normal vector of oXI pointing out of the sub-domain. It is
noticed that Eq. (9) contains only boundary integrals and does not include the gradient for the intermediate

velocity as in Eq. (8). The feature makes the evaluation of the integrals and therefore the whole procedure

more efficient. This is a big advantage of the Heaviside step test function. The formulation based on this test

function is also one of most accurate methods among all options available so far, according to numerical

investigations made in [9].
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4. Weight and shape functions

The unknown function p needs to be approximated by a set of discretised variables. Generally, the

approximation may be written as
pð~xÞ �
XN
j¼1

Ujð~xÞp̂j; ð10Þ
where N is the number of nodes that affect the pressure at point~x; p̂j are nodal variables but not necessarily
equal to the nodal values of p ~xð Þ; and Ujð~xÞ interpolation functions called shape functions as they play a

similar role to shape functions in finite element methods. However in finite element methods, the shape
functions are formulated by assuming that the unknown function is described by an explicit function

depending on the size of elements and connectivity between nodes and elements. In meshless methods, there

are no elements and no connectivity between nodes stored. Therefore, the formulation of shape function

here is entirely different from that for finite element methods. In general, a local approximation to the

unknown function is assumed in meshless methods, which is expressed in terms of unknown variables cor-

responding to some randomly located nodes nearby. This local approximation may be formulated in a vari-

ety of ways. One of them is to use a moving least-square (MLS) method [9], which is adopted in our work.

With this method, the shape function is given by
UJ ~xð Þ ¼
XM
m¼1

wmð~xÞ A�1ðx*ÞBð~xÞ
h i

mJ
¼ wTð~xÞA�1 x

*
� �

BJ ~xð Þ ð11Þ
with the base function being wTð~xÞ ¼ ½w1;w2;w3� ¼ ½1; x; y� ðM ¼ 3Þ; and the matrixes Bðx*Þ and Aðx*Þ being
defined as
Bðx*Þ ¼ WTWð~xÞ ¼ w1 ~x�~x1ð Þw ~x1ð Þ;w2 ~x�~x2ð Þw ~x2ð Þ; . . .½ �; ð12Þ

Aðx*Þ ¼ WTWð~xÞW ¼ Bð~xÞW; ð13Þ

where Wð~xÞ and W are, respectively, expressed by
Wð~xÞ ¼

w1ð~x�~xIÞ 0 � � � 0

0

� � �
0 wN ~x�~xIð Þ

2
6664

3
7775 ð14aÞ
and
WT ¼ w ~x1ð Þ;w ~x2ð Þ; . . . ;w ~xNð Þ½ � ð14bÞ
which shows each column of the matrix WT is the value of the base function w at a particular point. The

weight function wIð~x�~xIÞ may be chosen to be a spline function given by
wIð~x�~xIÞ ¼
1� 6 dI

rI

� �2

þ 8 dI
rI

� �3

� 3 dI
rI

� �4

0 6
dI
rI
6 1;

0 dI
rI
> 1;

8<
: ð15Þ
where rI is the size of support domain of the weight function (see Fig. 1) and dI ¼j~x�~xI j the distance be-
tween the node I and the point~x. In order to ensure the shape function is well defined, the number of nodes

(N) affecting the concerned point must be larger than M, i.e. NP 3 in 2D cases.
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After the pressure is obtained, the gradient of the pressure may be estimated by differentiating Eq. (10)
rpð~xÞ �
XN
J¼1

rUJ ð~xÞp̂J : ð16Þ
The partial derivatives of the shape function with respect to x are found by differentiating Eq. (11) [20].
Thus,
UJ ;x ¼ wT
;xA

�1BJ þ wTA�1
;x BJ þ wTA�1BJ ;x; ð17Þ
where A�1
;x is the partial derivative of A�1 with respect to x and is evaluated by A�1

;x ¼ �A�1A;xA
�1 with

A,x = B,xW; BJ is Jth column of Matrix B and its partial derivative is estimated by
BJ ;x ¼
owJ ð~x�~xJ Þ

ox
wð~xJ Þ: ð18Þ
One can also obtain the partial derivative with respect to y in a similar way or by replacing x with y in

Eq. (17). It should be noted that although the base function is a linear function of coordinate variables

(x, y), the shape function and its derivative are nonlinear and continuous. The gradient of the pressure

given by Eq. (16) is also continuous.
5. Imposing boundary conditions

Generally, there are two kinds of boundary conditions for the pressure in water wave problems, as

shown in Eqs. (2a) and (2b): the free surface condition specifying the pressure (similar to the essential

boundary condition in solid dynamics) and the solid boundary condition specifying the normal deriv-

ative of the pressure. The condition on the solid boundary was generally suggested to be imposed by
applying Eq. (8) to incomplete circular sub-domains of boundary nodes [8,9]. The implementation of a

essential boundary condition is not very straightforward since the unknown nodal values in MLS

approach to the shape function are not physical values as pointed out above and has received a con-

siderable amount of the research as summarized in [21]. The methods suggested include the penalty

method, transformation method, collocation method and so on. These approaches works well for fixed

(or with little movement) boundary problems as demonstrated by the cases in the publications, e.g.

[8,9,12,13,22]. However, there is no work to show whether the approaches are suitable for water wave

problems, in which the large variation of unknown free surface may occur. The penalty method was
tested in this work for the problems of this kind. It was found that big errors, particularly near the

free surface, can be quickly built up. The reason may be due to the fact that the addition of the penalty

term inevitably produces some errors since it is not an exact representation of the free surface boundary

condition. These errors may be negligible if the final solution could be found in one or a few time

steps. However, they may accumulate to a significant one in several thousand time steps even though

the whole scheme is stable. Although the accumulated error may be reduced by shortening the length of

the time step, it inevitably increases the computational costs.

Further numerical tests were performed in this work. It has been found that a better way to impose the
free surface and solid boundary conditions in water wave problems is not to use the integration form in Eq.

(9) for the nodes on boundaries, instead to use the following scheme:
XN
J¼1

UJ ð~xÞp̂J ¼ patm for nodes on the free surface ð19aÞ
and
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XN
J¼1

~n � rUJ ð~xÞp̂J ¼~n � ~g � _~U
� �

for nodes on the solid boundary: ð19bÞ
Eq. (19a) is similar to a collocation method, as used in [13] for acceleration in structural dynamic
problems.
6. Discretised equations

Inserting Eq. (10) into Eq. (9) and combining the result with Eq. (19) yields
K � P̂ ¼ F; ð20Þ

where
KIJ ¼

R
oXI

~n � rUJ ð~xÞds for inner nodes;

~n � rUJ ð~xIÞ for nodes on solid boundaries;

UJ ð~xIÞ for nodes on the free surface

8><
>:
and
F I ¼

q
Dt

R
oXI

~n �~u� dS for inner nodes;

~n � ~g � _~U
� �

for nodes on solid boundaries;

patmðxIÞ for nodes on the free surface;

8>><
>>:
where nodes J are those having non-zero influence on node I determined by the weight function.
7. Treatment of pressure gradient

It is well known that backward or forward finite difference schemes approximating a derivative have

lower order accuracy than a central scheme. Similarly, it can be understood that the pressure gradient esti-

mated for nodes on or near boundaries using Eq. (16) may not be as accurate as for inner nodes because the

related nodes to the boundary nodes distribute on one side only. In order to enhance the accuracy of the

pressure gradients near the boundaries particularly near the free surface, which is important for simulating

water waves, it is suggested here that the pressure gradients after estimated by Eq. (16) be treated using the

following equation:
rp ~xð Þ �
XN
J¼1

~UJ ~xð Þ rpð ÞJ ; ð21Þ
where the function ~UJ ð~xÞ is formulated by a similar method as for the shape function UJð~xÞ discussed above

but using a different weight function. The weight function used for this purpose is the Gaussian weight

function (e.g. [9]) defined by
~wI ~x�~xIð Þ ¼
e� aI�rð Þ2�e

�a2
I

1�e
�a2

I
�r ¼ dI

rI
6 1;

0 �r ¼ dI
rI
> 1;

8<
: ð22Þ
where rI and dI have same meanings as before and aI is an arbitrary coefficient controlling the shape of

the weight function. The larger the coefficient, the sharper the function is. Numerical tests show that the
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suitable value of aI is in a range of (2–3)rI but the best value may need to be explored in future. Although

the same weight function as in Eq. (15) may be adopted herein, our numerical tests show that it does not

give as good results as Eq. (22) for the treatment of the pressure gradient.
8. Numerical validation

In this section, the numerical method described above will be validated by applying it to simulating water

waves in a two dimensional tank generated by a wave maker. The sketch of the problem and coordinate

system are illustrated in Fig. 2. The generated wave may be mono-chromatic or bi-chromatic depending

on the motion of the wave maker S(t). In order to reduce the reflection, a damping zone is added at the

far end opposite to the wave maker, in which the velocity is modified by adding an artificial damping term

and computed by using ~uðnþ1Þ ¼~uð�Þ þ~uð��Þ � mðxÞ~uðnþ1Þ , in which m(x) is an artificial damping coefficient
defined as
m xð Þ ¼ 1

2
m0 1� cos

p x� xdð Þ
Ldm

� �� �
x P xd ; ð23Þ
where Ldm is the length of the damping zone taken as Ldm = 3d ; xd is the x-coordinate of the left end of the

damping zone; and m0 is the magnitude of the damping coefficient. A similar form of the damping coefficient

was used in [23,24] for a numerical wave tank based on potential theory using a finite element method, but

combined with a Sommerfeld condition. Extensive numerical tests were carried out in those papers to

choose optimum values for m0. Those values are not necessarily optimum here as the formulation is differ-

ent. Nevertheless, similar numerical investigations are not carried out in this paper since the main aim here

is to validate the numerical method rather than to investigate the effectiveness of the damping zone. Instead,
only one suitable value is chosen based on some numerical tests, which is m0 = 0.1.

The method will be validated in two ways: (1) comparing its numerical results with analytical solutions

and (2) comparing its numerical results with those obtained by a finite element analysis. It should be noted

that the finite element method is based on the potential theory, in which the velocity is calculated by using

the gradient of the velocity potential, and so it uses very different formulation from the method described in

this paper. The details of the finite element formulation can be found in [23].

When implementing the MLPG method, one must determine the sizes of integration and support do-

mains for all nodes. Theoretically, these sizes can be chosen arbitrarily. In practice, some factors have to
be considered. The size of an integration domain is determined by RXI = eh1I, where h1I is the distance be-
tween Node I and its nearest node and e is a coefficient. In order to ensure the integration domain is large

enough but always located entirely inside the computational domain, the value of e must be in the range of
x

L

Ldm

damping zone
y

d

Wave maker

Fig. 2. Sketch of the problem and coordinate system.
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0 < e < 1. The size of a support domain is given by rI = jh4I, where h4I is the distance between Node I and

the fourth node when counting all neighbour nodes of Node I from the nearest to the farthest one, as shown

in Fig. 3. (In 2D cases with uniformly-distributed nodes, h1I = h4I.) j is the coefficient controlling the size of

a support domain and its value should be specified with care. If j is too small, the support domain is too

small and too few nodes are involved in it, which may not be enough to result in a well-defined shape func-
tion. On the other hand, if it is too large, the support domain is too big and too many nodes are contained

in it. Too many nodes in one support domain require too much computational time to deal with and too

large support domain may lower the accuracy. The reason for lowering the accuracy is that the linear base

function used to determine the shape function can give a good approximation to the pressure field only in a

small local area. When the area is too large, the approximation is inevitably degraded. Based on numerical

tests, it is found that the suitable value for e is in the range of 0.5–0.9; and the suitable value for j is in the

range of 1.5–3 and tends to be larger for larger wave amplitudes. The best values for a specific case need to

be further explored. In this paper, all results are obtained using e = 0.6 and j = 2.0 for smaller amplitudes
and j = 2.5 for larger amplitudes.

In the following discussion, all variables and parameters are non-dimensionalised using d and g, i.e.
ðx; y; L; aÞ ! tðx; y; L; aÞd ! s

ffiffiffi
d
g

s
x ! x

ffiffiffi
g
d

r
:

8.1. Comparison with analytical solution

Waves with small steepness are considered first. They are generated by a piston wave maker in a tank

with the length L = 12, undergoing the following motion
S tð Þ ¼ S0 1� cos xtð Þð Þ ð24Þ

with the amplitude S0 = 0.004 and the frequency x = 1.45.

To simulate this case, nodes are uniformly distributed initially. Investigations have been carried out on

effects of different numbers of nodes and different lengths of time step using Dt = 0.01 0.02 and 0.04 and the

total number of nodes Nt = 151 · 13 = 1963 (dx � dy � 0.08, where dx and dy are the increment of distance

between nodes in x and y direction, respectively), 172 · 15 = 2580 (dx � dy � 0.07) and 201 · 17 = 3417

(dx � dy � 0.06). It is found from these investigations that the results obtained by using Dt = 0.01 and

0.02 and Nt = 2580 and 3417 are very similar. Fig. 4(a) shows some typical free surface profiles obtained

by different numbers of nodes with Dt = 0.02. For such a small value of the amplitude, a linearised analyt-
h1I 
h4I 

Fig. 3. Illustration of h1I and h4I.



-3.0

-1.5

0.0

1.5

3.0

0                                                  2                                                 4                                                  6                                                 8
x

W
av

e 
el

ev
at

io
n

/S
 0 Node No:3417

Node No: 2580

Node No: 1963

-3.0

-1.5

0.0

1.5

3.0

0 1 2 3 4 5 6 7

x

W
av

e 
el

ev
at

io
n

/S
 0

8

numerical

analytical

-3.0

-1.5

0.0

1.5

3.0

0 1 2 3 4 5 6 7 8

x

W
av

e 
el

ev
at

io
n

/S
 0

numerical

Analytical

(a)

(b)

(c)

Fig. 4. (a) Wave elevation at time = 12 for S0 = 0.004 and x = 1.45 obtained by different number of nodes. (b) Wave elevation at

time = 12 for S0 = 0.004 and x = 1.45 and comparison with analytical solution. (c) Wave elevation at time = 16 for S0 = 0.004 and

x = 1.45 and comparison with analytical solution.
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ical solution may be found [25]. This solution is plotted in Fig. 4(b) and (c) denoted by triangles and com-

pared with the numerical results for two different instants obtained by using Dt = 0.02 and Nt = 3417. It can

be seen that the agreement between the numerical and analytical solutions is very good, implying that the

method based on the MLPG described in this paper can produce accurate simulation of surface waves.

The performance of the MLPG method is further assessed by investigating the characteristics of relative

error of the numerical results. The relative error is defined as
Er ¼
kgc � gak

kgak
;

where kgk ¼
R
Ae
g2 dA with Ae being area over which the error is estimated; gc is the numerically computed

wave elevation measured from the mean free surface and ga is an analytical solution, such as the one given

in [25]. The method used for estimating the relative error is very similar to that used in [9] but the square
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root of the integration is not taken because the term
R
Ae
g2 dA, a measurement of wave energy, possesses

clearer physical meaning than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Ae
g2 dA

q
in water wave problems. The relative error is evaluated for the

case in Fig. 4 for larger increments in the node distance and presented in Fig. 5. It is observed that the rel-

ative error is oscillating with time, reflecting the basic property of water waves. This characteristic for water

waves is expected and is distinguished from those given in literature (e.g. [8,9,11]) for other problems. It

demonstrates that good numerical results at all time are more difficult to achieve for water waves than

for other problems. Nevertheless, the error in numerical results obtained by the MLPG method is indeed

reduced broadly with the decrease of distance between nodes, though the rate is different at different time.
This fact implies that the numerical results with satisfactory accuracy at all time are achievable as long as a

sufficiently large number of nodes are used.

8.2. Comparison with finite element methods for mono-chromatic waves

In the section, the results from the MLPG method will be compared with those from the finite element

method (FEM) in [24]. The waves are still generated by the wave maker moving as specified by Eq. (24) with

the same frequency.
The FEM was first employed to compute the wave elevations and to estimate the relative errors for the

cases shown in Fig. 5. The mesh for the FEM is generated using the same number of nodes as in that figure,

which are uniformly distributed initially. Fig. 6 depicts the comparison of the relative errors obtained from

the FEM and MLPG methods for the case with the number of nodes being 3471. It can be seen from this

figure that the rate of convergence of the MLPG method is faster than that of the FEM except for a short

period from start. One may then deduce that the number of nodes required in the MLPG method would be

smaller than that in the FEM to gain the same accuracy of numerical results under the conditions specified

here. This observation happens to be similar to that described in [12], where the MLPG method was
adopted to calculate the cantilever beam problems. Nevertheless, it must be noted that the characteristics
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Fig. 6. Relative errors of numerical results from the FEM and MLPG methods.
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of convergence of numerical results for water wave problems depend on many factors, such as the wave

frequency, the wave amplitude, the distribution of nodes and so on. Further investigations are required

before coming to conclude that the fact observed here generally holds in all situations.

To further check the behaviour of the MLPG-based method, it is then applied to simulating water waves

with larger amplitudes. Two amplitudes are considered: one is S0 = 0.048 and the other is S0 = 0.064. The
total number of nodes used for these cases is also 3417, which are again uniformly distributed initially. The

number of nodes used for the finite element analysis is roughly similar. The comparison of results obtained

by the two methods is given in Fig. 7 for S0 = 0.048 and Fig. 8 for S0 = 0.064, respectively. In these figures,

the dots represent the positions of nodes at the time shown on the upper-right corner obtained by the

MLPG-based method, with the red dots denoting the nodes constituting the free surface. The free surface

resulting from the finite element method is presented by solid lines. As can be seen, the results from the two

methods are very close.
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Fig. 7. Comparison of results obtained by MLPG and finite element methods for S0 = 0.048 (dots, nodes; red dots, nodes constituting

the free surface; solid line, the free surface obtained by the finite element method). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Comparison of results obtained by the MLPG and finite element methods forS0 = 0.064 (dots, nodes; red dots, nodes

constituting the free surface; solid line, the free surface obtained by the finite element method). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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The initial distribution of nodes in MLPG analysis is not necessarily uniform. The exponential distribu-

tion along the vertical direction with more nodes near the free surface has been tried with the same param-

eters as in Figs. 7 and 8. The results are very similar to those shown in these figures (so not presented here),

suggesting that the results from MLPG-based method may not be very sensitive to the initial distribution of
nodes.

8.3. Comparison with finite element methods for bi-chromatic waves

Similar simulations have been carried out for bi-chromatic waves generated by the wave maker with the

following motion
SðtÞ ¼ S10 1� cosðx1tÞð Þ þ S20 1� cosðx2tÞð Þ; ð25Þ

where S10 = 0.048, x1 = 1.45, S20S10/2 and x2 = 1.4x1. Other parameters used for this case are the same as

for Figs. 7 and 8. The configurations of nodes at two different time instants are presented in Fig. 9, again
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with finite element results denoted by solid lines. The agreement between the results from these two meth-

ods is also satisfactory.
9. Conclusion

In this paper, a methodology and corresponding numerical algorithm have been presented to simulate
water wave problems. A time-step marching procedure based on general governing equations for non-

viscous fluids is adopted. The main feature is that the boundary value problem at each time step is solved

by the meshless local Petrove–Galerkin (MLPG) method. The newly-extended method has been applied to

two-dimensional wave maker problems. The results from this method agree well with analytical solutions

for linear waves and with finite element results for relatively steeper waves. These comparisons demonstrate

that the MLPG-based method, without difficulties associated with generating and handling meshes, can be

as effective as widely-used finite element methods for water wave simulations.
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